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Asymmetric Synthesis and Fragmentation Reactions of 2-Alkyl- and 2,4-Dialkyl-3-iodo-
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Abstract: Fragmentation reactions of keto iodolactones 4 provide access to butenolides 5, 2-alkyl-4-
hydroxy-2-cyciohexen-i-ones 6, and butyroiactones 9. A%-P-Buienolides Se and 57 were converied
to heterocycles 14-16 by way of intramolecular cycloaddition reactions. @ 1998 Elsevier Science Ltd.
All rights reserved.
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A%.p-Butenolides have been used as intermediates 10r the synthesis of a wide range of naturai products,

including the macrolide antibiotics.] Although many methods for the construction of butenolides are
available, only a few provide access to 3,5-disubstitution and 3,5,5-trisubstitution.2 It is noteworthy that 3,5-
disubstituted butenolides are structural components of the Annonaceous acetogenins,3 the sesquiterpene
dilactones elephantin and elephantopin, furanocyclic diterpenes such as pseudopterolide,> the marine
alkaloids aceropterine and pseudopterane,® and certain stemona alkaloids.” Herein we describe chemistry
that provides 3,5-disubstituted and 3,5,5-trisubstituted butenolides as single enantiomers by fragmentation of
2-alkyl- and 2,4-dialkyl-3-iodo-1-oxocyclohexan-2 4-carbolactones.
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iodopropane, 1-chloro-4-iodobutane, 2-(2'-bromophenyl)-1-iodo-ethane or ethyl iodide gave the
corresponding 1,4-cyciohexadienes 2a-h as single diastereomers. Enol ether hydrolyses gave the f,¥enones
3a-h and iodolactonizations’d.¢ afforded the enantiomerically pure 2-alkyl-3-iodo-1-oxocyclohexan-2,4-
carbolactones 4a-h 82

Treatment of 4a with LiOH in THF and H20 (1:1) gave a mixture of butenolide carboxylic acid Sa and
2-methyl-4-hydroxy-2-cyclohexen-1-one 6a; separation by flash chromatography on silica gel (hexane,
ethyl acetate) gave Sa in 15% yield and 6a (72%). Higher proportions of THF in the fragmentation

reaction mixture resulted in the formation of more of the butenolide carboxylic acid Sa at the expense of
6a: a 5:1 mixture of THF and H2O gave a 45:55 mixture of Sa and 6a; a 10:1 mixture of THF and H,O
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1a,R'=H 2a, R' = H; R? = Me, 95% 3a,95% 42,90%
b, R' = Me b, R'= H; R® = (CHy)3Cl, 93% b, 8% b, 75%
. 2 c,92% c, 85%
¢, R' = CHzPh ¢, R' = H; R? = (CHy)4Cl, 89% 4 97% d 82%
d, R! = 0- MeOCsHy d, R' = H: R? = 0-BrCgHsCoHg, 89% e, 98% e, 80%
e, R' = Me; R? = Et, 100% f,96% L81%
A 9. 100% 9. 79%
I, R = CUHaPN, 1™ = ET, 93% n, Y3% h, 98%
g, R' = Me; R? = Me, 100%
h, R = 0-MeOCsHy; R® = Me, 78%

Reaction conditions: (a) K, NH3, THF, t-BuOH (1 equiv); piperylene; R2X; (b) 6 N HCI, MeOH,
25 °C; (¢) I, THF, H,0

to the degree of partitioning between fragmentation pathways is the relative size of the substituent RZ in 4 as
noted for fragmentations of 4b and 4d.8b Along with the relative size of the substituent at C(2), the presence
of substitution at C(4) also has a dramatic effect on product distribution. Fragmentations of 4e, 4f and 4h
provide the corresponding butenolide carboxylic acids in excellent yields.
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4a, R' = H; R% = Me 5a, 15% 6a,72%
1 2 _ b, 68% b, 15%
B, R = Hi R = (CHa)Cl d. 74% d. 7%
d, R’ = H; R® = 0-BrCgH5C2H4 e, 88% e, 8%
1 _ Me R2 = f,81% i, 2%
e, R1 = Me; R St g 38% q. 47%
f, R' = CHoPh; R = Et h, 85% h, -
g, R' = Me; RZ =
h, R' = 0-MeOCgH4; R? = Me
Conversions of 4 to the butenolide carboxylic acids 5 presumably involve hydroxide-induced cleavage
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The iodide substituent in 4 is axial and, therefore, not antiperiplanar to the C(1)-C(2) bond of the
cyclohexanone ring, suggesting that this Grob-type fragmentation probably is not concerted.? On the other
hand, 4-hydroxycyclohexenones 6 may be formed by a concerted fragmentation-elimination resulting from
addition of hydroxide to the axial lactone carbonyl group of 4. The trend in product distribution for
fragmentations of 4a-d and 4e vs 4g suggests that addition to the lactone carbony! group is retarded as the
size of the group R2 increases.

There is a remarkable change in nroduct distribution when lithium alkoxides are used in placg of
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aqueous alkali metal hydroxides (Scheme 2). With p-MeOCgH4CH,OLi (generated from the reaction of the
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alcohol with BuL.i) in anhydrous THF, lactone ring opening occurs to give alkoxide 7, which, instead of
converting to an epoxide,’® undergoes transannular addition to the C(1) carbonyl group to give 8,
fragmentation of 8 gives the chiral butyrolactone 9. Analytical studies have demonstrated that §, 6, and 9 are
formed without racemization. 10 It is noteworthy that the X-ray determined molecular structure for 9a shows
that the C-H bond at the stereogenic center is orthogonal to the p-orbitals of the a,B-unsaturated ester.
Thus, epimerization of 9a does not occur even though alkoxide bases are required to convert 4a to 9a.
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Reaction conditions: (a) PCC, SiQ,, CH;Cly; (b) MsCl, Et3N, CH;Cl;; NaN3, DMF; (c) Ph3P,
imidazole, Ir; (d) MeNHOH, THF, 25 °C; (e) benzene, reflux; (f) AIBN, Bu3zSnH, PhH, reflux.

Butenolides obtained by way of the asymmetric Birch reduction-alkylation protocol have outstanding
potential for intramolecular carbocyclic and heterocyclic ring constructions. Reduction of the carboxylic
acid group in Se and 5f with BH3*THF gives the 5-(3'-hydroxypropyl)butenolides 10e and 10f. Oxidations

of 10e and 10f with PCC give the corresponding carboxaldehyde derivatives 11e and 11f. The

intramolecular radical-olefin cyclizations 13 — 16, the intramolecular azide-olefin Cycioaddmﬁﬁs 12515

and the intramolecular nitrone-olefin cycioadditions 11 — 14 provide usefui fused ring systems for further
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