Asymmetric Synthesis and Fragmentation Reactions of 2-Alkyl- and 2,4-Dialkyl-3-iodo-1-oxocyclohexan-2,4-carbolactones. Single Enantiomer Preparation of Δαβ-Butenolides, 2-Alkyl-4-hydroxy-2-cyclohexen-1-ones and Butyrolactones.† Arthur G. Schultz, * Mingshi Dai, Seock-Kyu Khim, Liping Pettus and Kshitij Thakkar Department of Chemistry Rensselaer Polytechnic Institute Troy, NY 12180-3590 Received 9 March 1998; revised 27 March 1998; accepted 30 March 1998 Abstract: Fragmentation reactions of keto iodolactones 4 provide access to butenolides 5, 2-alkyl-4-hydroxy-2-cyclohexen-1-ones 6, and butyrolactones 9. $\Delta^{\alpha,\beta}$ -Butenolides 5e and 5f were converted to heterocycles 14-16 by way of intramolecular cycloaddition reactions. © 1998 Elsevier Science Ltd. All rights reserved. Keywords: Asymmetric synthesis; Cycloadditions; Enolates; Fragmentation reactions $\Delta^{\alpha,\beta}$ -Butenolides have been used as intermediates for the synthesis of a wide range of natural products, including the macrolide antibiotics.¹ Although many methods for the construction of butenolides are available, only a few provide access to 3,5-disubstitution and 3,5,5-trisubstitution.² It is noteworthy that 3,5-disubstituted butenolides are structural components of the Annonaceous acetogenins,³ the sesquiterpene dilactones elephantin and elephantopin,⁴ furanocyclic diterpenes such as pseudopterolide,⁵ the marine alkaloids aceropterine and pseudopterane,⁶ and certain stemona alkaloids.⁷ Herein we describe chemistry that provides 3,5-disubstituted and 3,5,5-trisubstituted butenolides as single enantiomers by fragmentation of 2-alkyl- and 2,4-dialkyl-3-iodo-1-oxocyclohexan-2,4-carbolactones. The preparation of 2-alkyl-3-iodo-1-oxocyclohexan-2,4-carbolactones **4a-h** is shown in Scheme 1. Birch reductions of **1a-d** to give the chiral amide enolates⁷ and alkylations with methyl iodide, 1-chloro-3-iodopropane, 1-chloro-4-iodobutane, 2-(2'-bromophenyl)-1-iodo-ethane or ethyl iodide gave the corresponding 1,4-cyclohexadienes **2a-h** as single diastereomers. Enol ether hydrolyses gave the β , γ -enones **3a-h** and iodolactonizations^{7d,e} afforded the enantiomerically pure 2-alkyl-3-iodo-1-oxocyclohexan-2,4-carbolactones **4a-h**. 8a Treatment of 4a with LiOH in THF and H₂O (1:1) gave a mixture of butenolide carboxylic acid 5a and 2-methyl-4-hydroxy-2-cyclohexen-1-one 6a; separation by flash chromatography on silica gel (hexane, ethyl acetate) gave 5a in 15% yield and 6a (72%). Higher proportions of THF in the fragmentation reaction mixture resulted in the formation of more of the butenolide carboxylic acid 5a at the expense of 6a: a 5:1 mixture of THF and H₂O gave a 45:55 mixture of 5a and 6a; a 10:1 mixture of THF and H₂O gave a 59:41 mixture of 5a and 6a (¹H NMR analysis). Other bases (NaHCO₃, KOH, Ba(OH)₂ and CsOH) were examined but they did not appear to offer any advantages over LiOH. Of more importance with regard 0040-4039/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. *PII*: S0040-4039(98)00785-0 [†]This paper is dedicated to Professor Richard H. Schlessinger, teacher and friend, who died on Dec. 11, 1997. Reaction conditions: (a) K, NH₃, THF, t-BuOH (1 equiv); piperylene; R²X; (b) 6 N HCl, MeOH, 25 °C; (c) I₂, THF, H₂O to the degree of partitioning between fragmentation pathways is the relative size of the substituent R² in 4 as noted for fragmentations of 4b and 4d.^{8b} Along with the relative size of the substituent at C(2), the presence of substitution at C(4) also has a dramatic effect on product distribution. Fragmentations of 4e, 4f and 4h provide the corresponding butenolide carboxylic acids in excellent yields. Conversions of 4 to the butenolide carboxylic acids 5 presumably involve hydroxide-induced cleavage of the cyclohexanone ring to give a lactone enolate; β -elimination of iodide from the enolate would give 5. The iodide substituent in 4 is axial and, therefore, not antiperiplanar to the C(1)-C(2) bond of the cyclohexanone ring, suggesting that this Grob-type fragmentation probably is not concerted. On the other hand, 4-hydroxycyclohexenones 6 may be formed by a concerted fragmentation-elimination resulting from addition of hydroxide to the axial lactone carbonyl group of 4. The trend in product distribution for fragmentations of 4a-d and 4e vs 4g suggests that addition to the lactone carbonyl group is retarded as the size of the group R^2 increases. There is a remarkable change in product distribution when lithium alkoxides are used in place of aqueous alkali metal hydroxides (Scheme 2). With p-MeOC₆H₄CH₂OLi (generated from the reaction of the alcohol with BuLi) in anhydrous THF, lactone ring opening occurs to give alkoxide 7, which, instead of converting to an epoxide, 7e undergoes transannular addition to the C(1) carbonyl group to give 8; fragmentation of 8 gives the chiral butyrolactone 9. Analytical studies have demonstrated that 5, 6, and 9 are formed without racemization. 10 It is noteworthy that the X-ray determined molecular structure for 9a shows that the C-H bond at the stereogenic center is orthogonal to the p-orbitals of the α , β -unsaturated ester. Thus, epimerization of 9a does not occur even though alkoxide bases are required to convert 4a to 9a. Scheme 3 Reaction conditions: (a) PCC, SiO₂, CH₂Cl₂; (b) MsCl, Et₃N, CH₂Cl₂; NaN₃, DMF; (c) Ph₃P, imidazole, I₂; (d) MeNHOH, THF, 25 °C; (e) benzene, reflux; (f) AIBN, Bu₃SnH, PhH, reflux. Butenolides obtained by way of the asymmetric Birch reduction-alkylation protocol have outstanding potential for intramolecular carbocyclic and heterocyclic ring constructions. Reduction of the carboxylic acid group in 5e and 5f with BH3•THF gives the 5-(3'-hydroxypropyl)butenolides 10e and 10f. Oxidations of 10e and 10f with PCC give the corresponding carboxaldehyde derivatives 11e and 11f. The intramolecular radical-olefin cyclizations $13 \rightarrow 16$, the intramolecular azide-olefin cycloadditions $12 \rightarrow 15$ and the intramolecular nitrone-olefin cycloadditions $11 \rightarrow 14$ provide useful fused ring systems for further synthetic transformations. The application of chemistry described in this note to asymmetric organic synthesis currently is under investigation. **Acknowledgment.** This work was supported by the National Institutes of Health (GM 26568). We thank Dr. Fook S. Tham for the X-ray structure determinations. ## References and Notes - 1. For example, see: Stork, G.; Rychnovsky, S. D. J. Am. Chem. Soc. 1987, 109, 1564. - (a) Rao, Y. S. Chem. Rev. 1976, 76, 625. (b) Larock, R. C.; Riefling, B.; Fellows, C. A. J. Org. Chem. 1978, 43, 131. (c) Herrmann, J. L.; Berger, M. H.; Schlessinger, R. H. J. Am. Chem. Soc. 1979, 101, 1544. (d) Cowell, A.; Stille, J. K. J. Am. Chem. Soc. 1980, 102, 4193. (e) Hanessian, S.; Hodges, P. J.; Murray, P. J.; Sahoo, S. P. J. Chem. Soc., Chem. Commun. 1986, 754. (f) Figureredo, M.; Font, J.; Virgili, A. Tetrahedron 1987, 43, 1881. (g) Buchwald, S. L.; Fang, Q.; King, S. M. Tetrahedron Lett. 1988, 29, 3445. (This paper reports what is said to be the first general method for preparation of optically active 3,5-disubstituted Δα,β-butenolides.) (h) Hoye, T. R.; Humpal, P. E.; Jiménez, J. I.; Mayer, M. J.; Tan, L.; Ye, Z. Tetrahedron Lett. 1994, 35, 7517. (i) Trost, B. M.; Müller, T. J. J.; Martinez, J. J. Am. Chem. Soc. 1995, 117, 1888. (j) Marshall, J. A.; Wolf, M. A. J. Org. Chem. 1996, 61, 3238. (k) Kablaoui, N. M; Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 5818. - 3. (a) Rupprecht, J. K.; Hui, Y.-H.; McLaughlin, J. L. J. Nat. Prod. 1990, 53, 237. (b) Sinha, S. C.; Keinan, E. J. Am. Chem. Soc. 1993, 115, 4891. (c) Zeng, L.; Zhang, Y.; McLaughlin, J. L. Tetrahedron Lett. 1996, 37, 5449. - 4. Kupchan, S. M.; Aynehchi, Y.; Cassady, J. M.; Schnoes, H. K.; Burlingame, A. L. J. Org. Chem. 1969, 34, 3867. - 5. Bandurraga, M. M.; Fenical, W.; Donovan, S. F.; Clardy, J. J. Am. Chem. Soc. 1982, 104, 6463. - 6. Rodriguez, A. D.; Soto, J. J. Tetrahedron Lett. 1996, 37, 2687. - (a) Schultz, A. G.; Macielag, M.; Sundararaman, P.; Taveras, A. G.; Welch, M. J. Am. Chem. Soc. 1988, 110, 7828. (b) Schultz, A. G. Acc. Chem. Res. 1990, 23, 207. (c) Schultz, A. G. J. Chinese Chem. Soc. (Taiwan) 1994, 41, 487. (d) Schultz, A. G.; Guzzo, P. R.; Nowak, D. M. J. Org. Chem. 1995, 60, 8044. (e) Schultz, A. G.; Holoboski, M. A.; Smyth, M. S. J. Am. Chem. Soc. 1996, 118, 6210; (f) McCloskey, P. J.; Schultz, A. G. Heterocycles 1987, 25, 437. - 8. (a) New compounds were characterized by ¹H and ¹³C NMR, IR, low resolution MS and combustion analyses. (b) Yields for 5b-5h and 6b-6h were determined from fragmentations of 4b-4h in 5:1 mixtures of THF and H₂O. - 9. Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry: Pergamon: Oxford, 1984. - 10. The enantiomeric purity of 6a was determined by chiral HPLC analysis: Chiralcel OJ column, 25:1 hexanes/2-propanol, 0.55 mL/min, λ = 221 nm, t_R = 40.8 min (major enantiomer), t_R = 44.5 (minor) >99% ee. The enantiomeric purity of 5a was determined by chiral HPLC analysis of the silyl ether derivative 17: Chiralcel OJ column, 99:1 hexanes/2-propanol, 0.35 mL/min, λ = 220 nm, t_R = 24.0 min (minor enantiomer), t_R = 28.0 min (major) >96% ee. The enantiomeric purity of butyrolactone 9a was determined by ¹⁹F NMR analysis of the Mosher ester of 18 (CF₃CO₂H reference) δ 4.33 (major diastereomer), 4.03 (minor) >98% ee; corrected for the 98% ee of the Mosher reagent (S)-MTAPCI. Racemic samples of 5a, 6a and 9a were prepared from the pyrrolidine amide corresponding to 1 and were used as controls for the analytical studies.